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1. Introduction

There has been a long history of interplay between differential geometry and supersymmet-

ric non-linear sigma models starting with the observation that N = 2 supersymmtery in

two dimensions requires the sigma model target space to be a Kähler manifold [1]. It was

first pointed out in [2] that one could construct conserved currents in (1, 1) sigma models

given a covariantly constant form on the target space, and in [3] it was shown that the

(1, 1) model on a Calabi-Yau three-fold has an extended superconformal algebra involving

precisely such a current constructed from the holomorphic three-form. In [4] symmetries

of this type were studied systematically in the classical sigma model setting; each mani-

fold on Berger’s list of irreducible non-symmetric Riemannian manifolds has one or more

covariantly constant forms which give rise to conserved currents and the corresponding

Poisson bracket algebras are non-linear, i.e. they are of W-symmetry type. Subsequently

the properties of these algebras were studied more abstractly in a conformal field theory

framework [5, 6] and more recently in topological models [7].

In this paper we shall discuss two-dimensional (1,1) supersymmetric sigma models with

boundaries with extra symmetries of the above type, focusing in particular on target spaces

with special holonomy. In a series of papers [8]–[12] classical supersymmetric sigma models

with boundaries have been discussed in detail and it has been shown how the fermionic

boundary conditions involve a locally defined tensor R which determines the geometry

associated with the boundary. In particular, in the absence of torsion, one finds that there

are integral submanifolds of the projector P = 1
2(1 + R) which have the interpretation

of being branes where the boundary can be located. These papers considered (1, 1) and
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(2, 2) models and the analysis was also extended to models of this type with torsion where

the intepretation of R is less straightforward. The main purpose of the current paper is to

further extend this analysis to include symmetries associated with certain holonomy groups

or G-structures. We shall discuss models both with and without torsion.

Torsion-free sigma models with boundaries on manifolds with special holonomy were

first considered in [13] where it was shown how the identification of the left and right cur-

rents on the boundary has a natural interpretation in terms of calibrations and calibrated

submanifolds. Branes have also been discussed extensively in boundary CFT [14], including

the G2 case [15], and in topological string theory [16].

The main new results of the paper concern boundary (1,1) models with torsion or with

a gauge field on the brane. There is no analogue of Berger’s list in the case of torsion

but we can nevertheless consider target spaces with specific G-structures which arise due

to the presence of covariantly constant forms of the same type. In order to generalise the

discussion from the torsion-free case we require there to be two independent G-structures

specified by two sets of covariantly constant forms {λ+, λ−} which are covariantly constant

with respect to two metric connections {Γ+,Γ−} and which have closed skew-symmetric

torsion tensors T± = ±H, where H = db, b being the two-form potential which appears

in the sigma model action. This sort of structure naturally generalises the notion of bi-

hermitian geometry which occurs in N = 2 sigma models with torsion [17, 4] and which

has been studied in the boundary sigma model context in [10]. We shall refer to this

type of structure as a bi-G-structure. The groups G which are of most interest from the

point of view of spacetime symmetry are the groups which appear on Berger’s list and

for this reason we use the term special holonomy. Bi-G-structures are closely related to

the generalised structures which have appeared in the mathematical literature [19 – 21].

These generalised geometries have been discussed in the N = 2 sigma model context [22 –

24]. In a recent paper they have been exploited in the context of branes and generalised

calibrations.

We shall show that, in general, the geometrical conditions implied by equating the

left and right currents on the boundary lead to further constraints by differentiation and

that these constraints are the same as those which arise when one looks at the stabil-

ity of the boundary conditions under symmetry transformations. It turns out, however,

that these constraints are automatically satisfied by virtue of the target space geome-

try.

We then study the target space geometry of some examples, in particular bi-G2, bi-

SU(3) and bi-Spin(7) structures. Structures of this type have appeared in the supergravity

literature in the context of supersymmetric solutions with flux [27, 28, 30].

The paper is organised as follows: in section 2 we review the basics of boundary sigma

models, in section 3 we discuss additional symmetries associated with special holonomy

groups or bi-G-structures, in section 4 we examine the consistency of the boundary con-

ditions under symmetry variations, in section 5 we look at the target space geometry of

bi-G structures from a simple point of view and in section 6 we look at some examples of

solutions of the boundary conditions for the currents defined by the covariantly constant

forms.
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2. Review of basics

The action for a (1, 1)-supersymmetric sigma model without boundary is

S =

∫
dz eijD+XiD−Xj , (2.1)

where

eij := gij + bij , (2.2)

b being a two-form potential with field strength H = db on the n-dimensional Riemannian

target space (M,g). Xi, i = 1, . . . n, is the sigma model field represented in some local

chart for M and z denotes the coordinates of (1, 1) superspace Σ. We shall use a light-cone

basis so that z = (x++, x−−, θ+, θ−), with x++ = x0 + x1, x−− = x0 − x1. D+ and D− are

the usual flat superspace covariant derivatives which obey the relations

D2
+ = i∂++; D2

− = i∂−−; {D+,D−} = 0 . (2.3)

We use the convention that ∂++x++ = 1. We shall take the superspace measure to be

dz := d2xD+D− (2.4)

with the understanding that the superfield obtained after integrating over the odd variables

(i.e after applying D+D− to the integrand) is to be evaluated at θ = 0.

As well as the usual Levi-Civita connection ∇ there are two natural metric connections

∇± with torsion [17, 18],

Γ(±)j
ik := Γj

ik ±
1

2
Hj

ik . (2.5)

The torsion tensors of the two connections are given by

T (±)i
jk = ±H i

jk , (2.6)

so that the torsion is a closed three-form in either case.

In the presence of a boundary, ∂Σ, it is necessary to add additional boundary terms

to the action (2.2) when there is torsion [9]. The boundary action is

Sbdry =

∫

∂Σ
aiẊ

i +
i

4
bij(ψ

i
+ψ

j
+ + ψi

−ψ
j
−) , (2.7)

where ai is a gauge field which is defined only on the submanifold where the boundary

sigma model field maps takes its values. Note that the boundary here is purely bosonic so

that the fields are component fields, ψi
± := D±Xi|, the vertical bar denoting the evaluation

of a superfield at θ = 0).1 The boundary term ensures that the action is unchanged if we

add dc to b provided that we shift a to a− c. The modified field strength F = f + b, where

f = da, is invariant under this transformation. In the absence of a b-field one can still have

a gauge field on the boundary.

1We shall use X
i to mean either the superfield or its leading component; it should be clear from the

context which is meant.
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In the following we briefly summarise the approach to boundary sigma models of

references [8]–[12]. We impose the standard boundary conditions [31] on the fermions,

ψi
− = ηRi

jψ
j
+, η = ±1, on ∂Σ (2.8)

We shall also suppose that there are both Dirichlet and Neumann directions for the

bosons. That is, we assume that there is a projection operator Q such that

Qi
jδX

j = Qi
jẊ

j = 0 , (2.9)

on ∂Σ. If F = 0, parity implies that R2 = 1, so that Q = 1
2(1−R), while P := 1

2(1 + R) is

the complementary projector. In general, we shall still use P to denote 1
2 (1 + R) and the

complementary projector will be denoted by π, π := 1 − Q. We can take Q and π to be

orthogonal

πk
i gklQ

l
j = 0 . (2.10)

Equation (2.9) must hold for any variation along the boundary. Making a supersymmetry

transformation we find

QR + Q = 0 . (2.11)

On the other hand, the cancellation of the fermionic terms in the boundary variation (of

S + Sbdry), when the bulk equations of motion are satisfied, requires

gij = gklR
k
iR

l
j . (2.12)

Using this together with orthogonality one deduces the following algebraic relations,

QR = RQ = −Q; QP = PQ = 0;

πP = Pπ = P ; πR = Rπ . (2.13)

Making a supersymmetry variation of the fermionic boundary condition (2.8) and using

the equation of motion for the auxiliary field, F i := ∇
(+)
− D+Xi|, namely F i = 0, we find

the bosonic boundary condition2

i(∂−−Xi − Ri
j∂++Xj) = (2∇̃jR

i
k − P i

lH
l
jmRm

k)ψ
j
+ψk

+ , (2.14)

where ∇̃ is defined by

∇̃i := P j
i∇j . (2.15)

Combining (2.14) with the bosonic boundary condition arising directly from the variation

we find

Êji = ÊikR
k
j , (2.16)

where

Eij := gij + Fij (2.17)

2The occurrence of (combinations of) field equations as boundary conditions is discussed in [32].
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and the hats denote a pull-back to the brane,

Êij := πk
iπ

l
jEkl . (2.18)

From (2.18) we find an expression for R,

Ri
j = (Ê−1)ikÊjk − Qi

j , (2.19)

where the inverse is taken in the tangent space to the brane, i.e.

(Ê−1)ikÊkj = πi
j . (2.20)

We can multiply equation (2.14) with Q to obtain

P l
[iP

m
j]∇lQ

k
m = 0 . (2.21)

Using (2.13) we can show that this implies the integrability condition for π,

πl
[iπ

m
j]∇lQ

k
m = 0 . (2.22)

This confirms that the distribution specified by π in TM is integrable and the boundary

maps to a submanifold, or brane, B. However, in the Lagrangian approach adopted here,

this is implicit in the assumption of Dirichlet boundary conditions. When F = 0 the

derivative of R along the brane is essentially the second fundamental form, K. Explicitly,

Ki
jk = P l

jP
m

k∇lQ
i
m = P l

j∇̃kQ
i
l. (2.23)

The left and right supercurrents are

T+3 : = gij∂++XiD+Xj −
i

6
HijkD+3X

ijk (2.24)

T−3 : = gij∂−−XiD−Xj +
i

6
HijkD−3X

ijk (2.25)

The conservation conditions are

D−T+3 = D+T−3 = 0 . (2.26)

The superpartners of the supercurrents are the left and right components of the energy-

momentum tensor, D+T+3 and D−T−3 respectively. If one demands invariance of the total

action under supersymmetry one finds that, on the boundary, the currents are related by

T+3 = ηT−3 (2.27)

D+T+3 = D−T−3 . (2.28)

The supercurrent boundary condition has a three-fermion term which implies the van-

ishing of the totally antisymmetric part of

2Yi,jk + P l
iHljmRm

k +
1

6
(Hijk + HlmnRl

iR
m

jR
n

k) , (2.29)

where

Yi,jk := (R−1)jl∇̃iR
lj . (2.30)
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3. Additional symmetries

A general variation of (2.1), neglecting boundary terms, gives

δS =

∫
dz 2gijδX

i∇
(+)
− D+Xj

= −

∫
dz 2gijδX

igij∇
(−)
+ D−Xj . (3.1)

The additional symmetries we shall discuss are transformations of the form,

δ±Xi = a±`L(±)i
j1...j`

D±`X
j1...j` , D±`X

j1...j` := D±Xj1 . . . D± + Xj` , (3.2)

where L(±) are vector-valued `-forms such that

λ(±)
i1...i`+1

:= gi1jL
(±)j

i2...i`+1
(3.3)

are (` + 1)-forms which are covariantly constant with respect to ∇(±). For example, a left

transformation of this type gives

δS =

∫
dz 2a+`λ(+)

i1...i`+1
D+`X

i2...i`+1∇
(+)
− D+Xi1

=

∫
dz

2

` + 1
a+`λ(+)

i1...i`+1
∇

(+)
− D+(`+1)X

i1...i`+1

=

∫
dz (−1)`D−

(
2

` + 1
a+`λ(+)

i1...i`+1
D+(`+1)X

i1...i`+1

)
, (3.4)

where the last step follows from covariant constancy of λ(+) and the chirality of the pa-

rameters,

D−a+` = D+a−` = 0 . (3.5)

Hence these transformations are symmetries of the sigma model without boundary. In

the torsion-free case the λs will be the forms which exist on the non-symmetric Riemannian

manifolds on Berger’s list. There is no such list in the presence of torsion but the same

forms will define reductions of the structure group to the various special holonomy groups.

In order to preserve the symmetry on the boundary we must have both left and right

symmetries so there must be two independent such reductions. Thus we can say that we

are interested in boundary sigma models on manifolds which have bi-G-structures.

The λ-forms can be used to construct currents L
(±)
±(`+1),

L
(±)
±(`+1) := λ(±)

i1...i`+1
D±(`+1)X

i1...i`+1 (3.6)

If we make both left and right transformations of the type (3.2) we obtain

δS =
2(−1)`

` + 1

∫
d2xD+D−

(
D−(a+`L

(+)
±(`+1)) − D+(a−`L−

−(`+1))
)

=
i(−1)`+1

` + 1

∫

∂Σ

(
D+(a+`L

(+)
±(`+1)) − D−(a−`L−

−(`+1))
)

. (3.7)
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In order for a linear combination of the left and right symmetries to be preserved in

the presence of a boundary the parameters should be related by

a+` = ηLa−` , (3.8)

D+a+` = ηηLD−a−` , (3.9)

on the boundary, where ηL = ±1.3 This implies that the currents and their superpartners

should satisfy the boundary conditions

L
(+)
+(`+1) = ηηLL

(−)
−(`+1) , (3.10)

D+L
(+)
+(`+1) = ηLD−L

(−)
−(`+1) . (3.11)

The boundary condition (3.10) implies

λ(+)
i1...i`+1

= ηLη`λ(−)
j1...j`+1

Rj1
i1 . . . Rj`+1

i`+1
. (3.12)

The algebra of left (or right) transformations was computed in the torsion-free case

in [4]. The commutators involve various generalised Nijenhuis tensors and the classical

algebra has a non-linear structure of W -type. In fact, the generalised Nijenhuis tensors

vanish in the absence of torsion. However, this is not the case when torsion is present. The

commutator of two plus transformations of the type given in (3.2) is (we drop the pluses

on the tensors to simplify matters),

[δL, dM ] = δP + δN + δK (3.13)

where P and N are antisymmetric tensors given by

PLM = (L · M)[L,M ] := Lp[LMp
M ] (3.14)

and

NiLM = (` + m + 1)Hjk[iL
j
LMk

M ] + (−1)`
`m

6
H[i`1`2QL3M ] . (3.15)

The (` + m − 2)-form Q is defined by

QL2M2
=

gij(L · M)[iL2,|j|M2]

n − (` + m − 2)
. (3.16)

Here L stands for ` antisymmetrised indices, L2 indicates that the first of these should be

omitted and so on. Square brackets around the multi-indices indicate antisymmetrisation

over all of the indices. The δK transformation is generated by the conserved current

K := TQ, where Q := QL2M2
D+(`+m−2)X

L2M2 . Note that P and Q can be zero and that

N is not the Nijenhuis concomitant except in the special case that L = M = J , an almost

complex structure.

The left and right symmetries commute up to the equations of motion. In the case

of (2, 2) models, closure of the left and right algebras separately requires the two type

3In the case that there is one pair of L tensors.
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(1, 1) tensors J (±) to be complex structures. They need not commute unless one demands

off-shell closure without the introduction of further auxiliary fields. However, any two left

and right symmetries of the above type commute up to a generalised commutator term as

a simple argument shows. Let δ± denote left and right variations with two L-tensors, of

different rank in general. We have

δ+δ−Xi = δ+

(
a−mL(−)i

KD−mXK
)

, (3.17)

where K denotes a multi-index with m antisymmetrised indices. Since all of the K indices

are contracted we can replace the δ+ variation by a covariant variation with the Levi-Civita

connection provided that we take care of the remaining i index. The explicit connection

term drops out in the commutator by symmetry. In the remaining terms one can introduce

either ∇(−), acting on L(−), or ∇(+), acting on δ+Xk, and then show that all of the

torsion terms cancel, bar one, again coming from the i index. However, this cancels in the

commutator too, because the plus and minus connections are swapped in the other term.

One thus finds

[δ+, δ−]Xi = (−1)nmn a−ma+n
(
L(−)i

mK2
L(+)m

pL2
− L(+)i

mL2
L(−)m

pL2

)
×

(
D+(l−1)X

L2D−(m−1)X
K2

)
×

(
∇

(+)
− D+Xp

)
, (3.18)

the third factor being the equation of motion. The multi-index L associated with L(+)

stands for n antisymmetrised indices.

4. Consistency

In this section we shall examine the consistency of the boundary conditions, i.e we inves-

tigate the orbits of the boundary conditions under symmetry variations to see if further

constraints arise. We shall show that the supersymmetry variation of the L-boundary con-

dition (3.10) and the L-variation of the fermion boundary condition (2.8) are automatically

satisfied if (3.12) is. To see this we differentiate (3.12) along B to obtain

Y (+)
k,[i1

mλ(+)
i2...i`+1]m = 0 , (4.1)

where

Y (+)
i,jk := (R−1)jl(∇̃

(+)
i Rl

k − H l
imRm

k) . (4.2)

Note that we have contracted the derivative with P rather than π; this is permissible

due to the fact that Pπ = πP = P . Equation (4.1) says that Y (+), regarded as a matrix-

valued one-form, takes its values in the Lie algebra of the group which leaves the form λ(+)

invariant. The constraint corresponding to the superpartner of the L-current boundary

condition is just the totally antisymmetric part of (4.1).

We now consider the variation of the fermionic boundary condition under L-transfor-

mations. We need to make both left and right transformations which together can be

– 8 –
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written

δXi = 2a+`P i
kL

(+)k
j1...j`

D+`X
j1...j` (4.3)

= 2a−`P i
kL

(−)k
j1...j`

D−`X
j1...j` . (4.4)

A straightforward computation yields

(2∇̃[kR
i
m] − P i

nHn
[k|p|R

p
m])L

(+)k
j1...j`

D+(`+1)X
j1...j`m = 0 . (4.5)

We define

Z
(+)
i,jk = (R−1)il(2∇̃[jR

l
k] + P l

mHm
n[jR

n
k]) , (4.6)

which is the term in the bracket in (4.5) multiplied by R−1. We claim that

Y
(+)
i,jk = Z

(+)
i,jk . (4.7)

This can be proved using (2.29) with the aid of a little algebra. Thus we have shown

that, if the boundary conditions (3.12) are consistent, then the constraints following from

supersymmetry variations of the L-constraints and from L-variations of the fermionic

boundary condition are guaranteed to be satisfied.

If λ(+) = λ(−) := λ the boundary condition (3.12) typically implies that ±R is an

element of the group which preserves λ. If this is the case, then (4.1) becomes an identity.

However, it can happen that R is not an element of the invariance group but that R−1dR

still takes its values in the corresponding Lie algebra. For example, if λ is the two-form

of a 2m-dimensional Kähler manifold and the sign ηLη = −1, R is not an element of the

unitary group but, since it must have mixed indices, it is easy to see that R−1dR is itself

u(m)-valued.

A similar argument applies in the general case, when λ(+) 6= λ(−). In the next section

we discuss how the plus and minus forms are related by an element V of the orthogonal

group (see (5.5)). Thus equation (3.12) can be written

λ(−)
i1...i`+1

= ηLη`λ(−)
j1...j`+1

R̂j1
i1 . . . R̂j`+1

i`+1
, (4.8)

where R̂ := RV −1. If we differentiate (4.8) along the brane with respect to the minus

connection we can then use the above argument applied to R̂.

5. Target space geometry

In this section we discuss the geometry of the sigma model target space in the presence of

torsion when the holonomy groups of the torsion-full connections ∇(±) are of special type,

specifically G2, Spin(7) and SU(3). We use only the data given by the sigma model and

use a simple approach based on the fact that there is a transformation which takes one

from one structure to the other. We begin with G2 and then derive the other two cases

from this by dimensional reduction and oxidation.

– 9 –
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G2. In this case we have a seven-dimensional Riemannian manifold (M,g) with two G2-

forms ϕ(±) which are covariantly constant with respect to left and right metric connections

∇(±) such that the torsion tensor is ±H. G2 manifolds with torsion have been studied

in the mathematical literature [33, 34] and have arisen in supergravity solutions [27]. Bi-

G2-structures have also appeared in this context and have been given an interpretation

in terms of generalised G2-structures [21]. They can be studied in terms of a pair of

covariantly constant spinors from which one can construct the G2-forms, as well as other

forms, as bilinears. We will not make use of this approach here, preferring to use the

tensors given to us naturally by the sigma model. As noted in [27] there is a common

SU(3) structure associated with the additional forms. We shall derive this from a slightly

different perspective here.

In most of the literature use is made of the dilatino Killing spinor equation which

restricts the form of H. The classical sigma model does not appear to require this restriction

as the dilaton does not appear until the one-loop level. The dilatino equation is needed in

order to check that one has supersymmetric supergravity solutions but is not essential for

our current purposes.

For G2 there are two covariantly constant forms, the three-form ϕ and its dual four-

form ∗ϕ (we shall drop the star when using indices). The metric can be written in terms

of them. A convenient choice for ϕ is

ϕ =
1

3!
ϕijke

ijk = e123 − e1(e47 + e56) + e2(e46 − e57) − e3(e45 + e67) (5.1)

This form is valid in flat space or in an orthonormal basis, the eis being basis forms.

Another useful way of think about the G2 three-form is to write it in a 6 + 1 split. We

then have

ϕijk = λijk

ϕij7 = ωij

ϕijk7 = −λ̂ijk , (5.2)

where i, j, k = 1 . . . 6, and {λ, λ̂, ω} are the forms defining an SU(3) structure in six dimen-

sions. The three-forms λ and λ̂ are the real and imaginary parts respectively of a complex

three-form Ω which is of type (3, 0) with respect to the almost complex structure defined

by ω.

On a G2 manifold with skew-symmetric torsion, the latter is uniquely determined in

terms of the Levi-Civita covariant derivative of ϕ [33, 34]. This follows from the covariant

constancy of ϕ with respect to the torsion-full connection.

Now suppose we have a bi-G2-structure. The two G2 three-forms are related to one

another by an SO(7) transformation, V . If we start from ϕ(−) this will be determined up

to an element of G
(−)
2 . So we can choose a representative to be generated by an element

w ∈ so(7) of the coset algebra with respect to g
(−)
2 . This can be written

wij = ϕ
(−)
ijk vk (5.3)

– 10 –
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and V = ew. The vector v will be specified by a unit vector N and an angle α. It is

straightforward to find V ,

V i
j = cos αδi

j + (1 − cos α)N iNj + sinα ϕ(−)i
jkN

k . (5.4)

Using

ϕ(+) = ϕ(−)V 3 , (5.5)

where one factor of V acts on each of the three indices of ϕ, we can find the relation

between the two G2 forms explicitly,

ϕ
(+)
ijk = Aϕ

(−)
ijk + Bϕ

(−)
ijklN

l + 3Cϕ
(−)
[ij

lNk]Nl , (5.6)

where

A = cos 3α, B = sin 3α, C = 1 − cos 3α . (5.7)

The dual four-forms are related by

ϕ
(+)
ijkl = (A + C)ϕ

(−)
ijkl − 4Bϕ

(−)
[ijkNl] − 4Cϕ

(−)
[ijk

mNl]Nm . (5.8)

The angle α is related to the angle between the two covariantly constant spinors. To

simplify life a little we shall follow [27] and choose these spinors to be orthogonal which

amounts to setting cos α
2 = 0. We then find

ϕ
(+)
ijk = −ϕ

(−)
ijk + 6ϕ

(−)
[ij

lNk]Nl . (5.9)

and

ϕ
(+)
ijkl = ϕ

(−)
ijkl − 8ϕ

(−)
[ijk

mNl]Nm . (5.10)

We can use the vector N to define an SU(3) structure as above. We set

ω = iNϕ(−) ; λ = ϕ(−) − ω ∧ N ; λ̂ = iN ∗ ϕ(−) . (5.11)

The three-form λ̂ is the six-dimensional dual of λ and the set of forms {ω, λ, λ̂} is the

usual set of forms associated with an SU(3) structure in six dimensions. For the plus forms

we have

iNϕ(+) = ω

ϕ(+) − ω ∧ N = −λ

iN ∗ ϕ(+) = −λ̂ . (5.12)

Thus a bi-G2-structure is equivalent to a single G2 structure together with a unit

vector (and an angle to be more general). The unit vector N then allows one to define a

set of SU(3) forms as above. In [27] it is shown that the projector onto the six-dimensional

subspace is integrable, but this presupposes that the dilatino Killing spinor equation holds.

Since we make no use of this equation in this paper it need not be the case that integrability

holds.
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It is straightforward to construct a covariant derivative ∇̂ which preserves both G2

structures. This connection has torsion but this is no longer totally antisymmetric. It is

enough to show that the covariant derivatives of N and ϕ(−) are both zero. If we write

∇̂iNj = ∇
(−)
i Nj − Si,j

kNk , (5.13)

where Si,jk = −Si,kj, then these conditions are fulfilled if

Si,jk =
1

2
Hijk +

1

4
Hi

lmϕ
(−)
lmjk −

3

2
HilmΠl

jΠ
m

k −
3

4
Hi

lmϕmijklnNnNm . (5.14)

Here Πi
j := δi

j − N iNj is the projector transverse to N .

SU(3). Manifolds with SU(3) × SU(3) have arisen in recent studies of supergravity so-

lutions with flux [28]–[30]. They have also been discussed in a recent paper on generalised

calibrations [25]. A bi-SU(3) structure on a six-dimensional manifold is given by a pair

of a pair of forms {ω(±),Ω(±)} of the above type which are compatible with the metric.

If the sigma model algebra closes off-shell the complex structures will be integrable. The

transformation relating the two structures can be found using a similar construction to that

used in the G2 case. However, we can instead derive the relations between the plus and

minus forms by dimensional reduction from G2. To this end we introduce a unit vector N ′,

which we can take to be in the seventh direction, and define the SU(3) forms as in equation

(5.2) above. We consider only the simplified bi-G2-structure and we also then take the unit

vector N to lie within the six-dimensional space. The unit vector N now defines an SO(6)

transformation. The relations between the plus and minus forms are given by

ω
(+)
ij = −ω

(−)
ij + 4ω

(−)
[i

kNj]Nk

λ
(+)
ijk = −λ

(−)
ijk + 6λ[ij

lNk]Nl.

λ̂
(+)
ijk = λ̂

(−)
ijk − 6λ̂

(−)
[ij

lNk]Nl . (5.15)

We can rewrite this in complex notation if we introduce the three-forms Ω(±) :=

λ(±) + iλ̂(±) and split N into (1, 0) and (0, 1) parts, n, n̄. So

Ni = ni + n̄i ; iωijN
j = ni − n̄i . (5.16)

Note that n · n̄ = 1
2 . Then equations (5.15) are equivalent to

ω
(+)
ij = −ω

(−)
ij − 2in[in̄j]

Ω
(+)
ijk = 6Ω̄

(−)
[ij

lnk]nl . (5.17)

This type of bi-SU(3)-structure is therefore equivalent to a single SU(3) structure

together with a normalised (1, 0)-form.
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Spin(7). A Spin(7) structure on an eight-dimensional Riemannian manifold is specified

by a self-dual four-form Φ of a certain type. In a given basis its components can be

constructed from those of the G2 three-form. Thus

Φabcd = ϕabcd ; and Φabc8 = ϕabc , (5.18)

where, in this section, a, b, . . . run from 1 to 7 and i, j, . . . run from 1 to 8. Spin(7) geometry

with skew-symmetric torsion has been discussed [33, 35] and generalised Spin(7) structures

have also been studied [21]. A bi-Spin(7)-structure on a Riemannian manifold consists of

a pair of such forms, covariantly constant with respect to ∇(±). We can again get from the

minus form to the plus form by an orthogonal transformation, but since the dimension of

SO(8) minus the dimension of Spin(7) is seven it is described by seven parameters. In the

presence of a Spin(7) structure one of the chiral spinor spaces, ∆s, say, splits into one- and

seven-dimensional subspaces, ∆s = R⊕∆7. The transformation we seek will be described

by a unit vector na ∈ ∆7 together with an angle.

It will be useful to introduce some invariant tensors for Spin(7) using this decomposi-

tion of the spin space. We set

φajk =

{
φabc = ϕabc

φab8 = δab

(5.19)

φabkl =

{
φab

cd = ϕab
cd − 2δcd

[ab]

φabc8 = −ϕabc

, (5.20)

where ϕabc is the G2 invariant. It will also be useful to define

φaijkl := φab[ijφ
b
kl] . (5.21)

The Spin(7) form itself can be written as

Φijkl = φa[ijφ
a
kl] . (5.22)

The space of two-forms splits into 7 + 21, and one can project onto the seven-dimen-

sional subspace by means of φajk. With these definitions we can now oxidise the G2

equations relating the plus and minus structure forms to obtain

Φ
(+)
ijkl = −Φ

(−)
ijkl − 6nanbφ

(−)a
[ijφ

(−)b
kl] . (5.23)

Here the unit vector N in the G2 case becomes the unit spinor n.

6. Examples of solutions

In this section we look at solutions to the boundary conditions for the additional symmetries

which can be identified with various types of brane. We shall go briefly through the main

examples, confining ourselves to U(n
2 ), SU(n

2 ) and the exceptional cases G2 and Spin(7).
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U(n
2 ) ≡ U(m). This case corresponds to N = 2 supersymmetry. For H = F = 0 we

assume that the supersymmetry algebra closes off-shell so that M is a Kähler manifold

with complex structure J , hermitian metric g and Kähler form ω. The Kähler form is

closed and covariantly constant. The boundary conditions for the second supersymmetry,

which can be viewed as an additional symmetry with λ = ω, imply

ωij = ±ωklR
k
iR

l
j . (6.1)

Thus there are two possibilities, type A where JR = −RJ and type B where JR = RJ

[36]. Consider type B first. In this case the brane inherits a Kähler structure from the

target space and so has dimension 2k. If there is a non-vanishing gauge field F , it must be

of type (1, 1) with respect to this structure. The calibration form is ωk.

For type B with zero F field, J is off-diagonal in the orthonormal basis in which R

takes its canonical form

R =

(
1p 0

0 −1q

)
, (6.2)

where p and q denote the dimensions of B and the transverse tangent space, p + q = n,

and 1p, 1q denote the corresponding unit matrices. The only possibility is p = q = m. The

Kähler form vanishes on both the tangent and normal bundles to the brane, so that the

brane is Lagrangian.

When the F field is non-zero the situation is more complicated. We may take R to

have the same block-diagonal form as in (6.2) but with 1p replaced by Rp. From (2.19)

Rp = (1 + F )−1(1 − F ) . (6.3)

The analysis of JR = −RJ shows that the brane is coisotropic [37]. This means that

there is a 4k-dimensional subspace in each tangent space to the brane where J is non-

singular, there is an r-dimensional subspace on which it vanishes, and the dimension of the

normal bundle is also r. The product (JpF ) is an almost complex structure and both Jp

and F are of type (2, 0) + (0, 2) with respect to (JpF ). For m = 3 we can therefore only

have p = 5. For m = 4 we can have p = 5 but we can also have a space-filling brane with

p = 8.

N = 2 sigma models with boundary and torsion have been discussed in [10]; the geom-

etry associated with the boundary conditions is related to generalised complex geometry

[24, 23].

SU(n
2 ) ≡ SU(m). In the Calabi-Yau case we have, in addition to the Kähler structure, a

covariantly constant holomorphic (m, 0) form Ω where m = n
2 . There are two independent

real covariantly constant forms, λ and λ̂, which can be taken to be the real and imaginary

parts of Ω. The corresponding L-tensors which define the symmetry transformations are

related by

L̂i
j1...jm−1

= J i
kL

k
j1...jm−1

(6.4)

Because there are now two currents we can introduce a phase rather than a sign in the

boundary condition. Thus

Ωi1...im = eiαΩj1...jmRj1
i1 . . . Rjm

im (6.5)
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A second possibility is that Ω on the right-hand side is replaced by Ω̄. For type

B branes, the displayed equation is the correct condition. The R-matrix is the sum of

holomorphic and anti-holomorphic parts, R = R⊕ R̄, and (6.5) implies that

detR = eiα . (6.6)

If F = 0 this fixes the phase, but if F 6= 0 it imposes a constraint on F which must in

any case be a (1, 1) form (from JR = RJ) [38]. The constraint is

detRp = eiα(−1)
q

2 , (6.7)

or

det (1 + f) = eiα(−1)
q

2 det (1 − f) (6.8)

where fa
b = gac̄Fc̄b, in a unitary basis.

For type A branes, from JR = −RJ it follows that R maps holomorphic vectors to

anti-holomorphic ones and vice versa so that Ω̄ must be used in (6.5). In the case that

F = 0 the brane is a SLAG with ReΩ as the calibration form. For F 6= 0 we have

coisotropic branes with an additional constraint on the gauge field [38].

The geometry of the bi-SU(m) case has been studied from the point of view of gener-

alised geometry and generalised calibrations in [25].

G2. The boundary conditions associated with the G2 currents are

ϕ = ηLϕR3

∗ϕ = ηL ∗ ϕR4 det R (6.9)

We consider first F = H = 0. From the first of these equations it follows that

(ηLR) ∈ G2. From this it follows that the sign in the boundary condition for ∗ϕ is always

positive because the sign of the determinant of R is equal to ηL. Thus the second constraint

reduces to ∗ϕ = ∗ϕR4.

There are two possibilities depending on the sign of ηL. If it is positive then non-zero

components of ϕ must have an even number of normal indices, whereas if it is negative they

must have an odd number of non-zero components. Since (ηLR) ∈ G2, and is symmetric,

it can be diagonalised by a G2 matrix so that we can bring R to its canonical form in

a G2 basis. Looking at the components of ϕ we see that the only possibilities which are

compatible with the preservation of the non-linear symmetries on the boundary are either

ηL = 1, in which case B is a three-dimensional associative cycle, or ηL = −1 in which case

B is a four-dimensional co-associative cycle [13].

Now let us turn to F 6= 0, but H = 0. We shall assume that the tangent bundle M ,

restricted to the brane, splits into three, TM |B = T1 ⊕ T2 ⊕ N , of dimensions p1, p2 and

q respectively. N is the normal bundle and R|T2
= 1p2

. If there is at least one normal

direction we may assume that one of these is 7 in the conventions of (5.2). Thus the

problem is reduced to a six-dimensional one, at least algebraically. The six-dimensional
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boundary conditions are (where R is now a 6 × 6 matrix),

λ = ηLλR3

λ̂ = ηLλ̂R3detR

ω = −ηLωR2 , (6.10)

in an obvious notation. If the sign is negative the brane is type B, whereas if ηL = +1

we have type A. These are the same conditions as we have just discussed in the preceding

section, the only difference being that the phase is not arbitrary. The constraints on the

F field are therefore slightly stronger.

The last possibility is a space-filling brane in seven dimensions. Since F is antisym-

metric there must be at least one trivial direction for R so that we can again reduce the

algebra to the six-dimensional case. The only possibilty is η = +1 in which case we have

type B. The non-trivial dimension must be even, and since detR = 1 the case p = 2 is also

trivial.

Now let us consider the case with torsion. The boundary condition for the non-linear

symmetries associated with the forms yield

ϕ(+) = ηLϕ(−)R3

∗ϕ(+) = ηL ∗ ϕ(−)R4det R , (6.11)

When the brane is normal to N we find, on the six-dimensional subspace,

λ = −ηλR3

λ̂ = −ηλ̂R3detR

ω = −ηωR2 , (6.12)

The analysis is very similar to the case of zero torsion with F . One finds that ηL = −1

corresponds to type B while ηL = +1 is type A. In particular, for type B there is a five-brane

which corresponds to the five-brane wrapped on a three-cycle discussed in the supergravity

literature [26, 27].

Spin(7). In the absence of torsion, the boundary condition associated with the conserved

current is

Φ = η̂ΦR4 , (6.13)

for some sign factor η̂. If this is negative then detR is also negative so that the dimension of

B must be odd. Furthermore, Φ must have an odd number of normal indices with respect

to the decomposition of the tangent space induced by the brane. However, one can show

that such a decomposition is not compatible with the algebraic properties of Φ. Therefore

the sign η̂ must be positive. It is easy to see that a four-dimensional B is compatible

with this, and indeed we then have the standard Cayley calibration with Φ pulled-back

to the brane being equal to the induced volume form. On the other hand if B has either

two or six dimensions one can show that it is not compatible with the Spin(7) structure.
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As one would expect, therefore, the only brane compatible with the non-linear symmetry

associated with Φ on the boundary is the Cayley cycle [13].

If F 6= 0, but H = 0, and if we assume that there is at least one direction normal to

the brane, then the Spin(7) case reduces to G2 (with F 6= 0). If the brane is space-filling

but there is at least one trivial direction, then there must be at least two by symmetry

and again we recover the G2 case. But we can also have a space-filling brane which is

non-trivial in all eight directions.
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